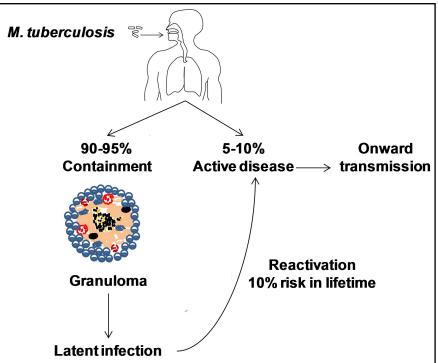
Nitrogen metabolism in dormant Mycobacterium tuberculosis


PhD student: Wei TAN Supervisor: Prof. Guoping Zhao Deparment of Microbiology Faculty of Medicine The Chinese University of Hong Kong Date: 15 Dec 2014

Outline

- Tuberculosis (TB) and Mtb
- Nitrogen metabolism in dormancy
 - 1. nitrate reduction
 - 2. ammonium assimilation
 - 3. regulatory mechanism
- Conclusions and perspectives

TB and Mtb

- Caused by aerobic bacteria Mtb
- Top infectious killing diseases.
 - HIV/AIDS 3 million
 - Tuberculosis kills 2 million
 - Malaria kills 1 million
- Widely spreaded world-wide
 - 1/3 carriers (latent infection),
 - among which 10% develop into disease (dormant Mtb >> active Mtb)

Most cases of active tuberculosis result from reactivation of latent infection

Latent infection and dormant Mtb

• Latent infection is ascribed to the tendency of Mtb to enter a dormant non-replicating state upon exposure to catastrophic stresses, such as anaerobiosis and host immunity.

Characteristics of dormant Mtb:

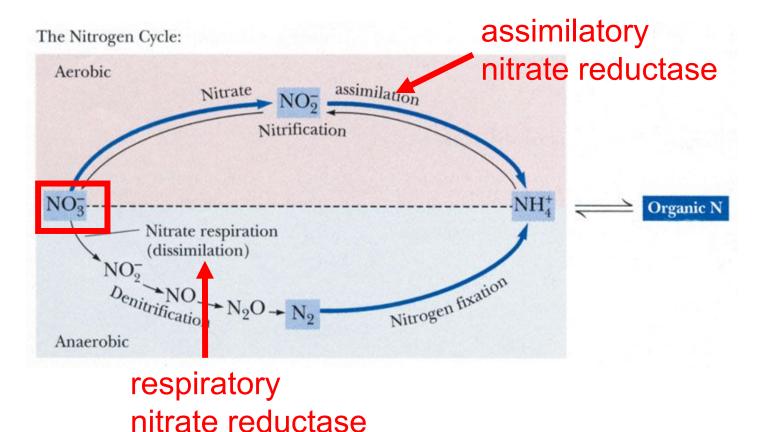
- still viable, re-activated
- phenotypic drug resistance
- > resistent to the host defense factors: hypoxia, low pH, ROS, nutrient starvation
- respiratory nitrate reduction provide energy for dormant Mtb

Dormant Mtb relies on a specific nitrogen metabolism?

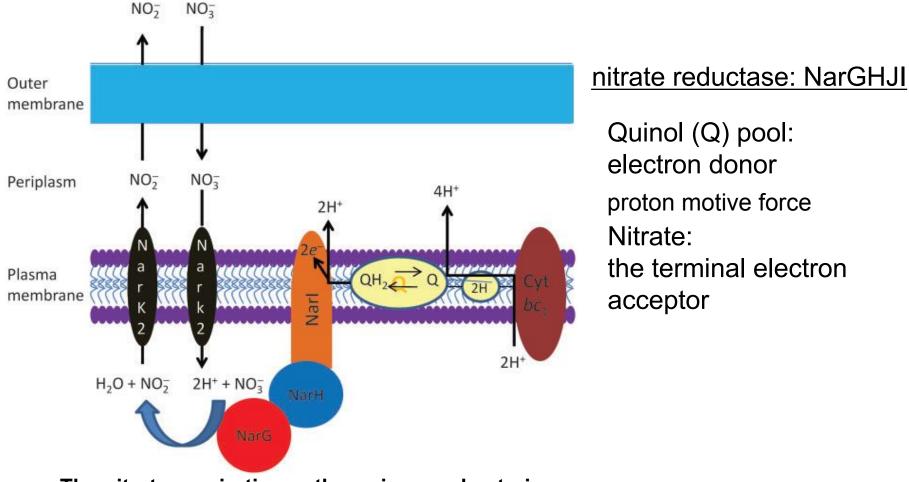
Owing to the limited availability of nutrients in host cell, how Mtb acquires nutrients to sustain its own metabolic demands is an intriguing question.

Why do we must know the nitrogen metabolism of dormant Mtb?

Because we want to know how to inhibit or stop the intracellular surival of dormant Mtb and eradicate it.

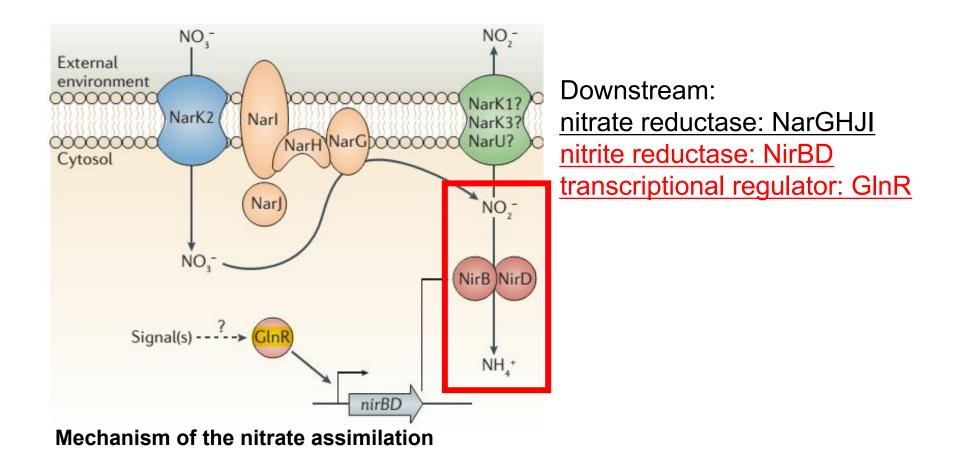

Nitrogen metabolism in dormancy

In addition to carbon, nitrogen is a fundamental constituent of biomolecules such as amino acids, nucleotides, cell wall components and organic cofactors.

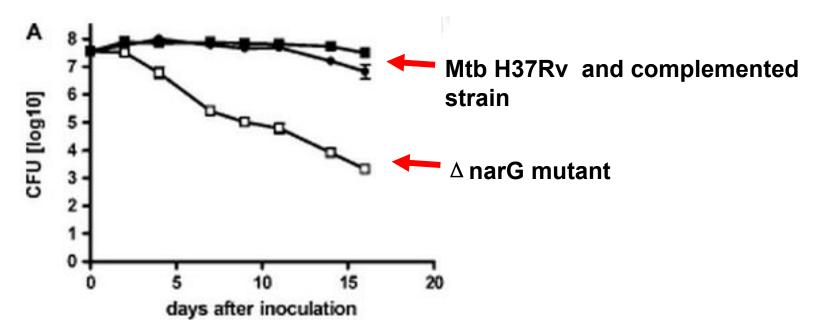

- Nitrogen sources: organic and inorganic compounds eg. ammonium (NH₄⁺), nitrate (NO₃⁻), nitrite (NO₂⁻)
- > Reduction of nitrate (NO_3^-)
- > Assimilation of ammonium (NH_4^+)

Nitrate reduction in dormancy

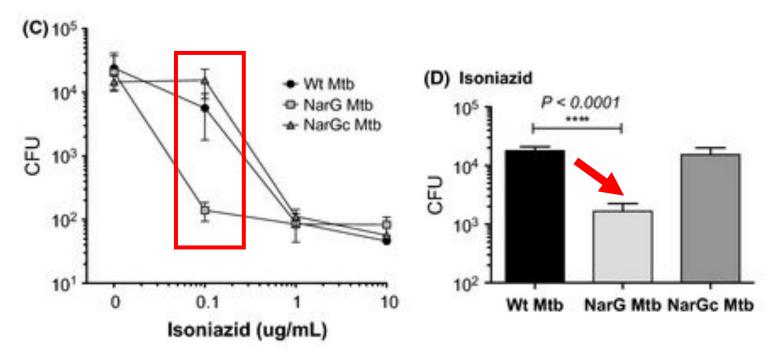
• Nitrate reductase(NarGHJI): the assimilatory and respiratory nitrate reductase


Nitrate reduction: respiration of nitrate

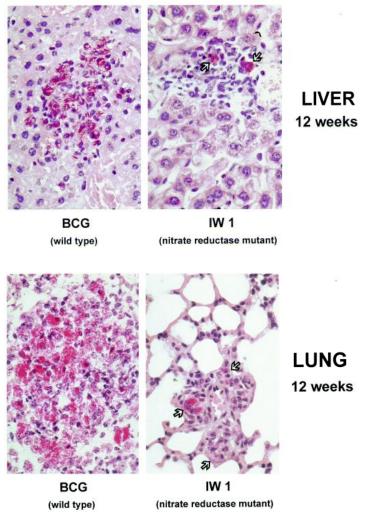
The nitrate respiration pathway in mycobacteria


A. Khan and D. Sarkar. Microbiology, 2012

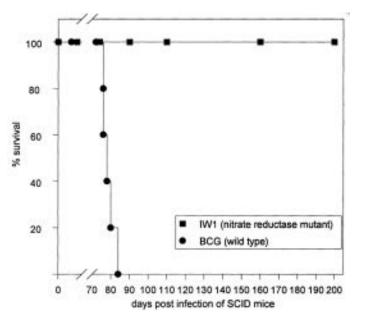
Nitrate reduction: assimilation of nitrate


Alexandre Gouzy, et al. Nat Rev Microbiol, 2014

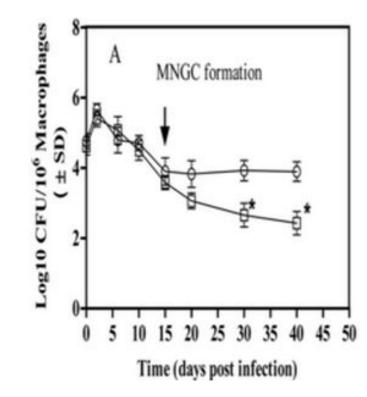
 Nitrate reductase(NarGHJI): mutant failes to persist under anaerobic conditions in vitro; complementation with Mtb narG restores the ability of the mutant to persist.



Aly S, et al. J Pathol, 2006


 Nitrate reductase(NarGHJI): mutant is more susceptible than wild-type Mtb to treatment with isoniazid during infection of macrophages

A. Cunningham-Bussel, et al. Microbiologyopen, 2013



Nitrate reductase(NarGHJI):

mice infected with the mutant had smaller granulomas containing fewer bacteria;

mice survival assay showed no signs of clinical disease after more than 200 days *M. bovis* BCG

 Nitrite reductase(NirBD): the number of viable nirBD mutants continue to decrease during intracellular dormancy.

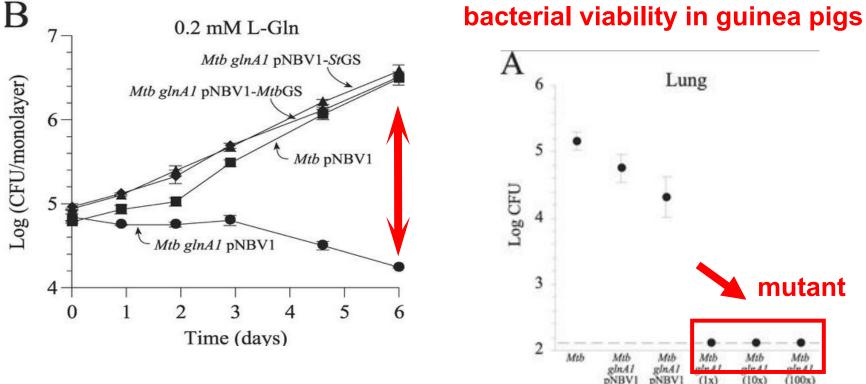
MNGCs: multinucleated giant cells

Shamim Akhtar, et al. J Bacteriol, 2013

- Nitrate reduction is proposed to play a role in the survival of Mtb during the dormant state.
- affect the virulence of Mtb

Assimilation of ammonium(NH4+)

Ammonium is assimilated into low molecular weight metabolites such as <u>glutamate</u> or <u>glutamine</u>.

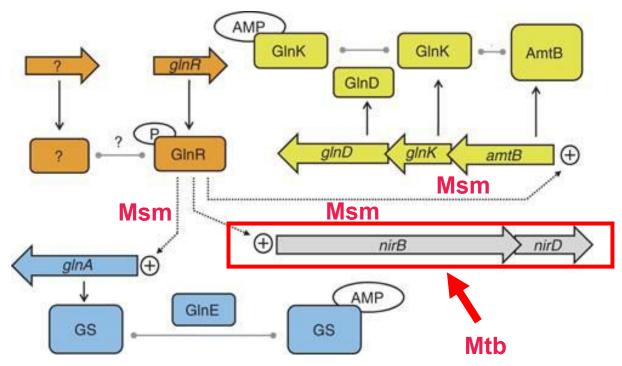

GDH Pathway (glutamate dehydrogenase): NH₄⁺ + 2-oxoglutarate + NADPH+ H⁺ < <u>GDH</u> > glutamate+NADP⁺

GS-GOGAT Pathway (Glutamine Synthetase-Glutamate Oxoglutarate Aminotransferase):

NH₄⁺ + glutamate + ATP --<u>GS</u>-> glutamine + ADP + Pi glutamine+2-oxoglutarate+NADPH+H⁺ GOGAT > 2glutamate+ NADP⁺

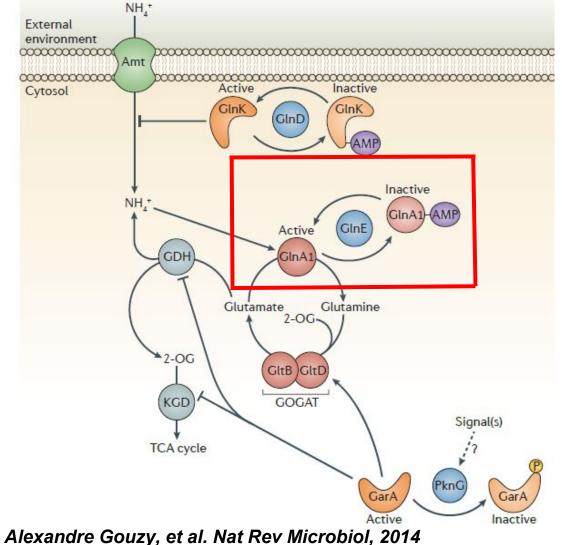
Ammonium assimilation and virulence

• Glutamine synthetase (GS) is essential for growth of Mtb in hman THP-1 macrophages and guinea pigs


Tullius MV1, et al. Infect Immun, 2003

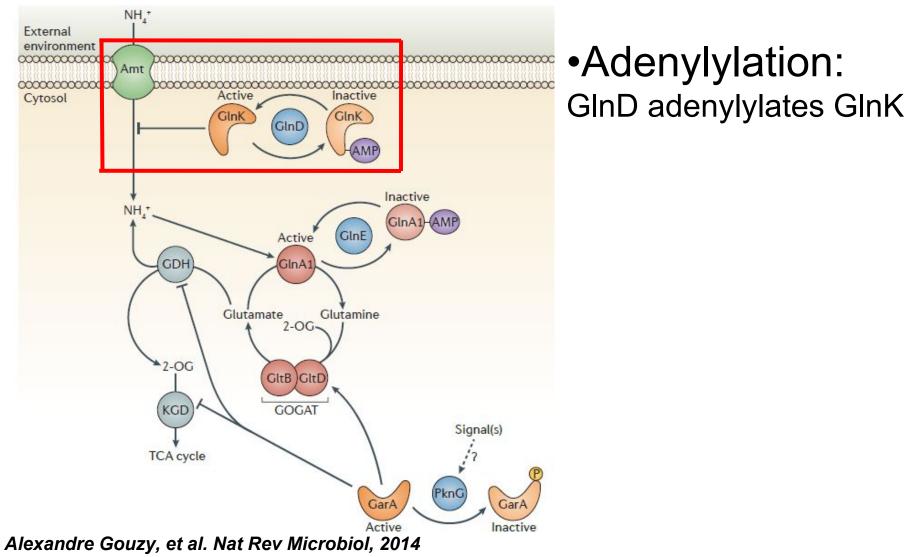
• Different molecular mechanisms are involved in the regulation of nitrogen metabolism.

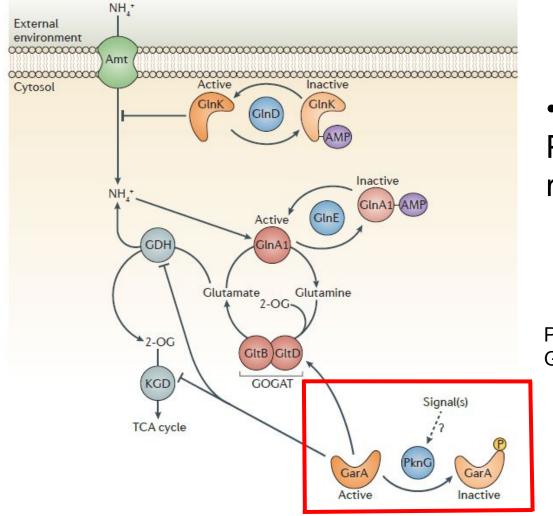
transcriptional level;


post-transcriptional level: adenylylation; phosphorylation;

Transcriptional Regulation: GlnR activate transcription of the *nirBD* operon, which encodes a nitrite (NO_2) reductase

Regulatory network of nitrogen metabolism in *M. smegmatis*


http://www.mikrobio.nat.uni-erlangen.de/research/burkovski/nitrogen.shtml



post-transcriptional level

•Adenylylation: GInE adenylylates GInA1

GInA1: glutamine synthetase GInE: adenylyl transferase

•<u>Phosphorylation</u> PknG inactivates the regulator GarA

PknG: serine-threonine kinase GarA: glycogen accumulation regulator A

Alexandre Gouzy, et al. Nat Rev Microbiol, 2014

Conclusions and perspectives

- In dormancy, nitrate metabolism is essential for the survival of dormant Mtb in macrophages.
- Nitrate metabolism and ammonium assimilation is individually involved in Mtb virulence during infection.
- Remaining question: GlnR
- ➢ need to be illustrated

References

- 1. A. Gouzy, Y. Poquet and O. Neyrolles. Nitrogen metabolism in Mycobacterium tuberculosis physiology and virulence. Nat Rev Microbiol. 2014 Nov;12(11):729-37.
- 2. A. Khan and D. Sarkar.Nitrate reduction pathways in mycobacteria and their implications during latency. Microbiology. 2012 Feb;158(Pt 2):301-7.
- 3. A. Cunningham-Bussel, F. C. Bange and C. F. Nathan. Nitrite impacts the survival of Mycobacterium tuberculosis in response to isoniazid and hydrogen peroxide. Microbiologyopen. 2013 Dec;2(6):901-11.
- 4. W. W. Krajewski, T. A. Jones and S. L. Mowbray. Structure of Mycobacterium tuberculosis glutamine synthetase in complex with a transition-state mimic provides functional insights. Proc Natl Acad Sci U S A. 2005 Jul 26;102(30):10499-504.
- 5. http://www.mikrobio.nat.uni-erlangen.de/research/burkovski/nitrogen.shtml
- 6. S. Malm, Y. Tiffert, et al. The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis. Microbiology. 2009 Apr;155(Pt 4):1332-9.
- 7. M. P. Tan, P. Sequeira, et al. Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses.PLoS One. 2010 Oct 26;5(10):e13356.
- 8. C. D. Sohaskey. Nitrate enhances the survival of Mycobacterium tuberculosis during inhibition of respiration. J Bacteriol. Apr 2008; 190(8): 2981–2986.
- 9. K. S. Goh, N. Rastogi, M. Berchel, R. C. Huard and C. Sola. Molecular evolutionary history of tubercle bacilli assessed by study of the polymorphic nucleotide within the nitrate reductase (narGHJI) operon.J Clin Microbiol. 2005 Aug;43(8):4010-4.
- 10. M. V. Tullius, G. Harth and M. A. Horwitz. Glutamine synthetase GlnA1 is essential for growth of Mycobacterium tuberculosis in human THP-1 macrophages and guinea pigs. Infect Immun. 2003 Jul;71(7):3927-36.
- 11. G. Harth and M. A. HorwitzInhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect Immun. 2003 Jan;71(1):456-64.
- 12. M. T. Nilsson, W. W. Krajewski, et al. Structural basis for the inhibition of Mycobacterium tuberculosis glutamine synthetase by novel ATP-competitive inhibitors. J Mol Biol. 2009 Oct 23;393(2):504-13.

Thank you